125 research outputs found

    A Novel Windowing Technique for Efficient Computation of MFCC for Speaker Recognition

    Full text link
    In this paper, we propose a novel family of windowing technique to compute Mel Frequency Cepstral Coefficient (MFCC) for automatic speaker recognition from speech. The proposed method is based on fundamental property of discrete time Fourier transform (DTFT) related to differentiation in frequency domain. Classical windowing scheme such as Hamming window is modified to obtain derivatives of discrete time Fourier transform coefficients. It has been mathematically shown that the slope and phase of power spectrum are inherently incorporated in newly computed cepstrum. Speaker recognition systems based on our proposed family of window functions are shown to attain substantial and consistent performance improvement over baseline single tapered Hamming window as well as recently proposed multitaper windowing technique

    Learnable MFCCs for Speaker Verification

    Get PDF
    We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allowing the model to be adapted to data flexibly. In practice, we formulate data-driven versions of the four linear transforms of a standard MFCC extractor -- windowing, discrete Fourier transform (DFT), mel filterbank and discrete cosine transform (DCT). Results reported reach up to 6.7\% (VoxCeleb1) and 9.7\% (SITW) relative improvement in term of equal error rate (EER) from static MFCCs, without additional tuning effort.Comment: Accepted to ISCAS 202

    Optimization of data-driven filterbank for automatic speaker verification

    Get PDF
    Most of the speech processing applications use triangular filters spaced in mel-scale for feature extraction. In this paper, we propose a new data-driven filter design method which optimizes filter parameters from a given speech data. First, we introduce a frame-selection based approach for developing speech-signal-based frequency warping scale. Then, we propose a new method for computing the filter frequency responses by using principal component analysis (PCA). The main advantage of the proposed method over the recently introduced deep learning based methods is that it requires very limited amount of unlabeled speech-data. We demonstrate that the proposed filterbank has more speaker discriminative power than commonly used mel filterbank as well as existing data-driven filterbank. We conduct automatic speaker verification (ASV) experiments with different corpora using various classifier back-ends. We show that the acoustic features created with proposed filterbank are better than existing mel-frequency cepstral coefficients (MFCCs) and speech-signal-based frequency cepstral coefficients (SFCCs) in most cases. In the experiments with VoxCeleb1 and popular i-vector back-end, we observe 9.75% relative improvement in equal error rate (EER) over MFCCs. Similarly, the relative improvement is 4.43% with recently introduced x-vector system. We obtain further improvement using fusion of the proposed method with standard MFCC-based approach.Comment: Published in Digital Signal Processing journal (Elsevier

    Quality Measures for Speaker Verification with Short Utterances

    Get PDF
    The performances of the automatic speaker verification (ASV) systems degrade due to the reduction in the amount of speech used for enrollment and verification. Combining multiple systems based on different features and classifiers considerably reduces speaker verification error rate with short utterances. This work attempts to incorporate supplementary information during the system combination process. We use quality of the estimated model parameters as supplementary information. We introduce a class of novel quality measures formulated using the zero-order sufficient statistics used during the i-vector extraction process. We have used the proposed quality measures as side information for combining ASV systems based on Gaussian mixture model-universal background model (GMM-UBM) and i-vector. The proposed methods demonstrate considerable improvement in speaker recognition performance on NIST SRE corpora, especially in short duration conditions. We have also observed improvement over existing systems based on different duration-based quality measures.Comment: Accepted for publication in Digital Signal Processing: A Review Journa
    corecore